
1

Getting Started with QuantLib by Vasily Nekrasov

Preface

Currently there are many books on quantitative finance for graduate students. Most of them are pretty
similar and repeat the same stuff on risk-neutral valuation (Black-Scholes model, no-arbitrage, Ito calculus,
martingale measure, etc). There are also enough books on numerical finance. These books are more
individual, some concentrate on theoretical aspects (convergence, computational efficiency), some focus on
programming aspects and on C++ in particular.

This book is different. First of all it is written with practice in mind: bitter experience clearly tells us that a
working quant not necessarily needs to understand all mathematical nuances1 but must be able to
provide a proper final result and do it fast. The main goal of this book is to teach you this. Another
important goal is to give you some hand-on experience with big software projects like QuantLib. To my best
knowledge, there is no such other book. Additionally, you will also get familiar with version control,
doxygen, unit tests and so on. Formally this stuff is not a programming (and thus rarely taught in lectures on
programming) but every software engineer needs it in practice2.
I deliberately decided to stick to Windows and Visual Studio and not to discuss programming under Linux
and Eclipse. These are important issues but the quants usually develop under Windows3 and porting to
Linux (if necessary) is usually assigned to "pure IT" staff. Moreover, Microsoft has recently liberalized the
distribution policy and everyone can get Visual Studio Community Edition free of charge4. Additionally,
students may download VS Professional for free (note that Community and Professional editions seem to be
essentially the same). Interestingly, QuantLib was initially Windows-only project and porting to Linux was
one of the first community contribution5.

Since I am most experienced as fixed income quant, we will mostly concentrated on respective instruments
and interest rate models. This is not due to my personal caprice but rather due to the fact that virtually all
financial (and many non-financial) institutions have interest rate swap[tion]s in their portfolios. Moreover,
starting with even simplest stock models (that imply stochastic processes) may be hard and starting with the
calculation of a bond yield shall be easy (however, not as easy as you might believe). Interestingly, the
fathers of QuantLib got started at the interest rate desk6.

Writing this book I tried to keep the prerequisites as moderate as possible. I assume the basic knowledge of
C++ and object oriented programming (the latter is very briefly reviewed). If you do not possess this stuff,
you should first read e.g. "C++ from the Ground Up" by Herbert Schildt. On the other and I do not assume
any knowledge of design patterns. Those that are relevant for QuantLib, will be discussed in detail.
As to stochastic finance, as long as we deal with date and bond arithmetic, you do not need it. In the sense
of 80ς20 Pareto rule7 in may be clever for a "pure programmer" to learn only this relatively easy stuff in
order to increase the chances to get a job in a bank or corporate treasury. For more advanced topics some

1
 Though it never hurts and often is still useful.

2
 Probably, the knowledge of this stuff (or lack of it) distinguishes a programmer from a code monkey.

3
 Likely because their solutions are often integrated in Excel.

4
 http://www.visualstudio.com/en-us/news/vs2013-community-vs.aspx

5
 http://www.moneyscience.com/pg/blog/Admin/read/464541/open-source-finance-1-quantlib-an-interview-with-

luigi-ballabio
6
 ibid

7
 http://en.wikipedia.org/wiki/Pareto_principle

http://www.yetanotherquant.com/

2

knowledge of stochastic finance is required. Ideally, you should first read both volumes of "Stochastic
Calculus for Finance" by Steven Shreve and then "Arbitrage Theory in Continuous Time" by Tomas Björk. If
you want to quickly get your hands dirty, read "Financial Calculus: An Introduction to Derivative Pricing" by
Baxter and Rennie. This book omits many details but provides a sufficient overview for lazybones. And
those, who want to dig deeply and dwell on details should have a look at my LIBOR market model tutorial in
Appendix B.

Finally, it is worth telling how I got started with programming and with QuantLib. Well, my first experience
was with Basic on KOPBET (Russian 8-bit computer) in the age of 12. Then I learnt Turbo Pascal on i286 in
school and Z80 assembler on ZX Spectrum. In 1997 my family could to the first time afford a "serious"
computer (it was P166 MMX). By that time the Internet came to Russia and I quickly learnt web
programming by myself (at first Perl then PHP) and (being a student) I moonlighted as a web developer. In
1999 I got started with Java ... which turned out to be pretty hard. Object oriented programming was
something radically new. Additionally, I encountered event driven model, multithreading and so on. The
literature was scarce by that time and the most of freely available tutorials were obsolete and considered
Java 1.0, whereas I got started with Java 1.1 and then Java 1.2...
As a result, I was able to write simple applets but it took a couple of years before I really understood the
OOP. I also read a couple of books on C++ but did not really used it. After I graduated from the university in
2002 I worked as web developer till I moved to Germany in 2005 to make my Master of financial
engineering. University programs in Germany are usually very theoretic and mine was no exception. So I
dwelt upon theory (including fine measure-theoretic aspects), which I do not regret since if you miss it in the
university, you will hardly get a chance to catch up. But since I got few computational tasks, the
programming was neglected. Only as I started with my master thesis I revived my programming skills
because both theoretical and numerical results were required. By that time I heard about QuantLib (version
0.8.0). I attempted several time to build it from sources and finally got it. However, the installation of the
boost binaries was only partially successful and the unittest suite did not work. Analogously to my Java case,
I encountered too many new stuff with QuantLib: boost libraries, design patterns, date arithmetic... but now
I was very short of time and thus postponed it for a while.
After completing my thesis I got a job as quant developer. I recalled and complemented my C++ knowledge.
My main duty was the maintenance and enhancement of a calculation engine ("Rechenkern" in German).
This engine was primarily developed to calculate loans and mortgages but it also had some functions to
price derivatives. So I used QuantLib to check the calculation results from this Rechenkern. I must note that
by that time I did not deeply understood QuantLib. I merely looked how it is done in unit tests then often
just put my values and got the result. The situation changed as Dimitri Reiswich's excellent tutorials were
published online. They gave me a holistic view of QuantLib.
Later I changed to the German Finance Agency and used QuantLib for model risk validation. I also wanted to
implement the HPSn model in QuantLib8, which was developed by my front office colleagues. However,
there was little interest to my initiative, so I just implemented a very alpha version that was really not worth
checking-in to QuantLib repository.
Now, as you know my QuantLib experience, you will likely understand why I am not going to teach you how
to contribute to QuantLib. This is a purpose of Luigi Ballabio's book9 and he definitely can achieve it better
than me. I am going to teach you to use the already available QuantLib functionality (which is really huge)
and how to write [quick and dirty] extensions that solve your problems.

8
 http://www.yetanotherquant.com/QuantLib/ImplementingHPS/

9
 http://implementingquantlib.blogspot.de/p/the-book.html

3

Chapter 1: Building QuantLib and setting up developer toolbox

Building QuantLib is not an easy tasks. I know enough quants that gave up QuantLib because they failed to
[quickly] compile it from sources. Thus let us discuss the installation process in detail.
First of all you need to install Visual Studio. By the time I wrote this book the current version was VS2013. I
highly recommend you to install a community edition, which, as I have already said, is free. VS Express will
also do but it does not support plug-ins like Visual Assist (see below).

As the next step you need to build boost libraries. These libraries are "one of the most highly regarded and
expertly designed C++ library projects in the world."10 To build them do the following:

1. Download the source code from www.boost.org. Current version is 1.57.0. Unpack to C:\
2. Start Visual Studio, go to TOOLS -> Visual Studio Command Prompt (Figure 0.1)
3. Change directory to C:\boost_1_57_0\ tools\build
4. Run bootstrap.bat (this will build b2.exe)
5. Copy b2.exe to C:\boost_1_57_0 and run it there (Figure 0.2)
6. Drink coffee (if you use older version of Visual Studio or boost, you might also have a lunch)

Note that boost evolves quickly and the build-tools also do. A couple of years ago bjam.exe was to be used
but currently it is replaced with b2.exe. That's why always have a look at
http://www.nuclearphynance.com/Show%20Post.aspx?PostIDKey=152032
In this thread I will provide the current setup instructions for boost.

Now we may build QuantLib. Current version is 1.4.1, which supports VS2012 but not VS2013. Fortunately, it
is not a problem, just open QuantLib_vc11.sln in VS2013 and it will automatically convert it11 (Figure 0.3).
Most likely, VS2013 will be officially supported when this book gets published.
As the next step you need to set up the boost path. In Solution Explorer select all projects,
select Properties -> Configuration Properties -> VC++ Directories and add C:\boost_1_57_0 to
Include Directories and C:\boost_1_57_0\stage\ lib to Library Directories (Figure 0.4). Press F7 to build
solution (you may again go drink coffee).

In principle, we can already start with QuantLib but from practical point of view we are not yet done with
toolbox setup. First of all I highly recommend you to install the Visual Assist12, a Visual Studio plug-in, which
greatly enhances its functionality. It allows you to quickly switch between header (.hpp) and .cpp files (how
may Microsoft have missed this feature?!), flexibly search for files in your project by keywords (Figure 1.5),
find all references to a variable and much more. Visual Assist is not cheap but there are discounts for private
users and students. But if you are a really poor student you may alternatively install VSAid13. At least it
allows a quick switch between .hpp and .cpp, which is really indispensible. Note that neither Visual Assist
nor VSAid work with Visual Studio Express.

Further you should install a version control system. I am a big fan of Subversion (aka SVN). QuantLib itself
used SVN before migrating to Git. However, Git may mostly be advantageous for big "geographically
dissipated" teams. For a "one-or-two developers team" SVN should be fine.

10

 Herb Sutter and Andrei Alexandrescu, C++ Coding Standards
11

 Such straightforward conversion was not always the case. For example, as one wanted to convert QuantLib 1.2.1
from VS2010 to VS2012 a quick and dirty trick was to replace error "unknown Microsoft compiler" with define
QL_LIB_TOOLSET "vc100" in D: \ sandbox \ QuantLib -1.2.1 \ ql \ auto_link.hpp.
12

 http://www.wholetomato.com/features/default.asp
13

 http://www.brocksoft.co.uk/vsaid.php

4

Figure 0.1 Visual Studio Command Prompt

Unfortunately, I cannot teach you version control in detail. But there are enough tutorials in Internet. I just
briefly tell you that a proper version control allows you to track the changes, compare versions, rollback to
previous version if the current version is erroneous and much more. No serious software project can do
without version control14. Writing this book I also use SVN: initially a version control was applicable to text
files only, but now it can be used for MS Word documents as well (Figure 0.6) and even for the graphic data!

The easiest way to install SVN is to download respective stack from bitnami15. This is a server side part,
which by default will be available under http://localhost/subversion/

14

 Well, I know a bank, whose quants were advanced enough to use QuantLib but they had no version control due to
highly bureaucratic IT policy by this bank.
15

 https://bitnami.com/stack/subversion

5

Additionally, you need an SVN client, I highly recommend TortoiseSVN16. If you are confused, well, you may
also work without a version control. But I highly recommend you to learn it, you will need it if you are going
to program professionally!

Figure 0.2 Building boost libraries from command line

16

 http://tortoisesvn.net

6

Figure 0.3 Converting QuantLib from VS2012 to VS2013

Figure 0.4 Setting boost path in VS2013

7

Figure 0.5 Visual Assist powerful search

8

9

Figure 0.6 SVN and MS Word: comparing two versions of this book

Last but not least we install the Doxygen17. "Doxygen is de facto the standard tool for generating
documentation from annotated C++ sources ... [it] is very useful to quickly find your way in large source
distributions. Doxygen can also visualize the relations between the various elements by means of include
dependency graphs, inheritance diagrams, and collaboration diagrams; all of them are generated
automatically".
As I started my career as a quant developer, I had to maintain a big library like QuantLib. Though I previously
had some experience with big projects, all of them were websites with a straightforward business logic,
directly visible in a browser. Now it was not the case anymore. Fortunately, the library had a rich suite of
unittests (Quantlib also has). So as I applied Doxygen to the source code, it extracted a lot of information.
The most important were likely the inheritance and call/caller graphs. Let us, for example, have a look at the
implementation of the Black-76 model in QuantLib. Doxygen has generated the following inheritance, call
and caller graphs:

Figure 0.7 Inheritance graph for the class BlackCalculator and call/caller graphs for the method elasticity

From the inheritance graph we see that the class BlackScholesCalculator inherits from the class
BlackCalculator. In particular, it means that if we modify the BlackCalculator, this will likely affect the
BlackScholesCalculator. Call/caller graphs for the method elasticity tells us where this method is called and

17

 http://www.stack.nl/~dimitri/doxygen/

10

which methods it calls. It may be very useful for debugging and we are aware, which methods can be
affected if we change something in elasticity.
Doxygen has a built-in graph generator but if you want to have them generated nicely, you need to install
the Graphviz18. It is also recommended to install LaTeX19. Doxygen understands LaTeX commands and they
are to be found in QuantLib sources.

You should also tune the Doxygen settings in such a way that it generates full graphs. QuantLib developers,
themselves, use Doxygen to generate official QuantLib HTML documentation. For the visibility's sake they
limit the number of nodes in graphs. However, such visibility may be deceptive, for example, the inheritance
graph for the Vasicek model from the official documentation neither tells us that Vasicek belongs to the
realm of calibrated models20 nor shows the members and functions of the classes. An obvious shortcoming
of the complete graphs is that they can get illegible. But a 4K monitor21 can at least partially mitigate this
problem.

Ok, we are (almost) done with technical setup, let us run some QuantLib code. Assign project Bonds as
StartUp project, set a breakpoint at line 240 in Bonds.cpp and start debugging (F5).

Open Bonds.cpp, press Ctrl + G to and enter 240 in order to jump to the line 240
FVS TipE

The variables representation in debugger window is not very clear. In particular, todaysDate is represented
as {serialNumber_=39706} and the representation of all shared pointers boost::shared_ptr<T> (soon we will
discuss them in detail) is hardly legible. We lay aside the former for a while but can quickly fix the latter. Just
install the Natvis visualizer for boost by Arkady Shapkin from
https://visualstudiogallery.msdn.microsoft.com/61f12e7a-bc62-4b2c-b02e-d66014688c2e
run the same code again and compare the representation in debugger (Figure 0.9).

Natvis lets you customize the representation of C++ types in the debugger. It is a relatively new technology,
which was introduced in VS2012. Before one overwrote the data representations in autoexp.dat (not
supported anymore from VS2012). As a quant developer you probably should not dwell upon this technical
details too much. But it is obviously worth being aware of this technology and installing ready-to-use
visualizers, if available.

FVS TipE

18

 http://www.graphviz.org
19

 http://miktex.org
20

 which means that QuantLib lets us fit the model parameters to the current term structure and a set of traded
instruments like swaptions or caps.
21

 4K monitors have 3840 x 2160 pixels.

11

Figure 0.8 Inheritance graphs for Vasicek model: official documentation vs. full graph

12

Figure 0.9 Representation of boost::shared_ptr<T> before and after installation of Natvis visualizer

13

Chapter 2: Recalling object oriented programming and getting started with

date arithmetic .

Although this book assumes the basic knowledge of C++ (and thus OOP) we will at first quickly review its
concepts. My experience shows that the students usually understand the main OOP principles but do not
fully realize their advantages and their proper usage. The object oriented programming, as its name implies,
works with objects. In turn, the objects are the instances of classes. Let us start with the class Date that is
defined in ql/time/date.hpp

In order to open date.hpp quickly go to VASSISTX -> Open File in Solution and type date

Figure 1.1 FVS TipE

As every class, Date contains fields (a.k.a. attributes or member variables) and methods (the procedures and
functions defined within the class). There is only one field: serialNumber_ that contains the number of days
counting from 01.12.1900. The understrike at the end of the field's name is a coding convention, which lets
us quickly distinguish the class member variables from the local variables in class methods22.

In accordance with the encapsulation (the 1st OOP principle) serialNumber_ is private, which means that
only the methods of the Date class23 can access this field. There are also some private methods, for example
static void checkSerialNumber(BigInteger serialNumber). This method, as its name implies, checks whether a
serial number (which uniquely represents a date) is valid.
Public and private methods separate, so to say, the interface and the realization. In this sense the private
methods not only say that you are not allowed to call them but first of all they tell you that you will never
need to call them! Indeed, you will not need checkSerialNumber(BigInteger serialNumber) when you are
calculating any financial instrument. But obviously you may need the methods dayOfMonth(), month(),
year() that are declared public. Moreover, QuantLib core team can change the implementation of
checkSerialNumber(BigInteger serialNumber) or even rename/replace this method without a fear that it may
damage the software projects that engage QuantLib.

22

 Probably a better convention would be an understike at the beginning, i.e. "_serialNumber" instead of
"serialNumber_". Then the Visual Studio Debugger would group all member variables together. However, you should
better follow the established convention, especially if you are going to contribute your code to QuantLib.
23

 Additionally, the [methods of] the friend classes can. But Date has no friend classes.

14

You may have also noted that some methods are declared as static and some not. The latter have to do with
objects whereas the former are defined for the classes as such. For example, a method call like
Date.weekday() does not make sense since Date is a class (and not an object of the class Date). Thus trying
to call Date.weekday() one actually says "tell me the weekday of date" (which date?!). But the command
"tell me the weekday of 10.12.1979"24 is absolutely correct.
On the other hand some properties of Date are the same for all objects of the class Date. Thus we can deal
with them at the class (not at the object) level. For example the methods minDate() and maxDate() return
the minimal and maximal dates, which QuantLib can digest (they are, respectively, 01.01.1901 and
31.12.2199). These are obviously class-level attributes. On the other hand the method
isEndOfMonth(const Date& d) is also declared as static but it is not obvious whether it really belongs to the
class level. One may also have defined it as non-static, since it is the property of a concrete date, whether it
is the end of month or not. Moreover, I had an occasion to maintain a proprietary library that calculated
loans and the date class in this library had an attribute endOfMonth_. The problem was as following: if a
credit starts, say on the 28th of February and the installments are paid monthly, when should the next
installment be paid: on the 28th or on the 31th of March?! It actually depended on loan agreement (ultimo
or not). At first glance the introduction of the attribute endOfMonth_ in the Date class seems ugly and a
better solution would be to introduce something like ultimo_ attribute in the class Loan. However, there
were so many types of loans and their hierarchy was so complicated that the solution with the
endOfMonth_ as Date attribute was probably the easiest from the practical point of view. In other words: a
good software architecture is very important but in practice there are always trade-offs between
architecture, performance, code brevity and (last but not list) programmers' skills and personal preferences.

So far let us stop with theory for a while and do something with QuantLib. First of all add a new project
DateToy to the QuantLib Solution. In Solution Explorer click on Solution 'QuantLib_vc11' -> Add -> New
Project.

Figure 1.2 Adding new project to the QuantLib Solution

24

 In terms of C++/QuantLib: (Date(10, December, 1979)).weekday();
QuantLib::Date(10, QuantLib::December, 1979) instantiates the object of the class Date and weekday() returns the
weekday of 10.12.1979 (it is Monday).

15

Select Console application and deactivate Precomiled headers and Security DevelopmentLifecycle (SDL)
checks (Figure 1.3).

Figure 1.3 Application settings for the new project

Figure 1.4 Add reference to QuantLib

